Increased greening amplifies global warming in boreal zones


New research focuses on biophysical impacts of climate change

Greenhouse gases speed plant growth. How will that affect global temperatures? @bberwyn photo.

Staff Report

Vegetation plays a key role in the climate change equation, with a recent study showing that vegetation density has substantial climate impacts. According to the research by the European Union’s Joint Research Center, the findings show that vegetation has a warming effect in cold areas and cooling effect in warm areas.

Figuring out the net effect would help develop more integrated and effective climate mitigation and adaptation strategies. The puzzle is complex. Increasing greenhouse gases spur vegetation growth, but the overall effects at the global level are not clear. The new study explores how changes in leaf area (a measure of vegetation density) affect local climate.

The findings suggest that changes in surface energy (heat) are closely related to changes in leaf area density. Increases in that density lead to enhanced absorbed radiation and surface warming in boreal and cold temperate regions by reducing the surface albedo.

By contrast, increased LAI in warm regions is associated with cooling due to evapotranspiration (evaporation from the soil and other surfaces and transpiration from plants). These effects are found to increase five-fold under extreme climate conditions (e.g. extreme warm and dry, and cold and wet years).

Given this connection between vegetation density and surface energy, the authors investigate the global impacts of the recent boost in greening. They found big differences in the sensitivity of temperature to changes in LAI in different parts of the world. The cold and wet climates of boreal regions, particularly in northern Canada and central Europe, showed significant LAI-related warming due to a reduction in albedo. This was offset by browning in north-eastern America and Eurasia (mainly due to forest disturbances), which had a mild cooling effect.

By contrast, dry regions of the Southern Hemisphere (South Africa, south-eastern America and Australia) show an LAI-related cooling trend, mainly due to daytime evapotranspiration.

The overall impacts of the recent greening on global temperature are limited due to the compensation of opposite local effects across different climate regions. The authors estimate an overall biophysical cooling effect related to long-term changes in LAI, which outweighs the recent estimates of climate warming driven by deforestation. They also found that greening limits the variation in daytime surface temperature, and that positive feedbacks in the land-climate system may amplify the biophysical impacts of variations in LAI on surface energy fluxes.

The findings help explain the contrasting regional climate responses in scenarios of global warming and widespread greening. In cold and humid regions, greening increases surface warming due to variations in albedo, while in warm regions greening has a cooling effect through evapotranspiration. Altogether the recent greening has therefore reduced the spatial variability of temperatures across the Earth.

Greening is amplifying air temperature trends in some biomes. This is of particular concern for cold biomes (e.g. tundra and boreal forest/taiga), where the rapid greening and sensitivity of surface temperature to LAI are contributing to the accelerated warming of ecosystems that are particularly vulnerable to climate change.

The relationships between vegetation cover and surface energy fluxes described in the article may serve as a benchmark for global climate models, as future changes in environmental conditions could alter the dominant mechanisms observed in today’s climate. Given that climate change is expected to intensify worldwide, it is likely that greening and climate change will be even more connected and have even greater impacts than they do now. How these biophysical feedbacks will develop will impact the future climate of the Earth.

The authors propose that the biophysical impacts of dynamics of global vegetation on local climate, in particular under extreme weather conditions, should be accounted for in the design of local mitigation and adaptation strategies.

Further information

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s