Study eyes link between climate change and infant health

sdfg
Does climate change have an effect on pregnancy and infant health?

Research in Africa suggests drought and heatwaves results in lower birth weight

Staff Report

A complex statistical analysis of health and climate data suggests there may be a link between climate change and birth weight, at least in parts of the developing world. The findings show that a pregnant woman’s exposure to reduced precipitation and an increased number of very hot days results in lower birth weight.

The two-year research project was led by University of Utah geography professor Kathryn Grace, who said the results are a clear warning that climate change may have a direct affect on public health.

“Our findings demonstrate that in the very early stages of intra-uterine development, climate change has the potential to significantly impact birth outcomes,” Grace said. “While the severity of that impact depends on where the pregnant woman lives, in this case the developing world, we can see the potential for similar outcomes everywhere,” said Grace.

The researcher team, including experts who track rainfall patterns in Africa, acknowledged the challenges of compiling accurate health information in rural areas of developing countries, but collected data from surveys done by the United States Agency for International Development (USAID), along with growing season data, and temperature and rainfall data from a variety of sources.

In total, the team examined nearly 70,000 births in 19 African countries between 1986 and 2010 and matched these births with seasonal rainfall and air temperatures, as well as variables describing the mother and mother’s household, such as education level and whether the household had access to electricity.

The results show that an increase of hot days above 100 degrees Fahrenheit during any trimester corresponds to a decrease in birth weight. In fact, just one extra day with a temperature above 100 degrees in the second trimester corresponded to a 0.9 gram weight decrease; this result held with a larger effect when the temperature threshold was increased to 105 degrees Fahrenheit.

Conversely, higher amounts of precipitation during any trimester resulted in larger birth weights. On average, a 10 mm increase in precipitation during a particular trimester corresponds to an approximate increase in birth weight of around 0.3-0.5 grams.

“While the results are dependent on trimester and location, the data shows that climate change ā€” a combination of increased hot days and decreased precipitation ā€” correlate to lower birth weights,” said Grace.

 

Low birth weight infants are more susceptible to illness, face a higher risk of mortality, are more likely to develop disabilities and are less likely to attain the same level of education and income as an infant born within a healthy weight range.

Consequently, the financial burden of a low birth weight infant can be significant. The costs of newborn intensive care unit stays and services, re-hospitalization and long-term morbidity can add up quickly, and in developing countries where such support services are less common and physical disability is considered a social stigma, low birth weight can be particularly impactful.

“At the end of the day, the services we invest in to support these developing countries won’t reap the same level of benefits as long as climate change continues,” she said. “Services such as education, clean water efforts and nutrition support won’t be as effective. We need to work faster and differently to combat the evident stresses caused by climate change.”

Other researchers involved in the study included Frank Davenport, Heidi Hanson, Christopher Funk and Shraddhanand Shukla. The team reported the findings in Global Environmental Change. Christopher Funk (US Geological Survey) and UC Santa Barbara Climate Hazards Group provided the climate data used in the study, and have just detailed exceptional East African rainfall declines in a new paper in Nature Scientific Data.

 

 

 

 

This is the first time researchers utilized fine-resolution precipitation and temperature data alongside birth data to analyze how weather impacts birth weight.

To generate precipitation records for each birth, the team calculated the average precipitation for a given month within 10 km of the child’s birth location. This was done for each month up to one year prior to each child’s birth. The values were then summed over each trimester.

The same method was used to generate temperature records for each birth. The team first calculated the maximum daily temperature for a given calendar day within 10 km of a child’s birth location. From there, the number of days in each birth month where the temperature exceeded 105 F and 100 F as the maximum daily temperature were summed over trimesters.

Evidence and impact of climate change

 

“At the end of the day, the services we invest in to support these developing countries won’t reap the same level of benefits as long as climate change continues. Services such as education, clean water efforts and nutrition support won’t be as effective. We need to work faster and differently to combat the evident stresses caused by climate change.”

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s