Report shows growing impacts of ocean acidification

CU-Boulder scientists study document decline of calcification rates in marine organisms around Antarctica

kjh
The Southern Ocean may lose its ability to function as a carbon sink. bberwyn photo.

Staff Report

*More Summit Voice stories on ocean acidification

FRISCO — The steady increase of atmospheric carbon dioxide is already causing large-scale shifts in the ocean carbon cycle, according to University of Colorado, Boulder scientists, who calculated the calcification rate of marine organisms in the Southern Ocean.

According to the scientists there has been a 24 percent decline in the amount of calcium carbonate produced in large areas of the Southern Ocean over the past 17 years.

The study shows that a ubiquitous type of phytoplankton — tiny organisms that are the base of the marine food web — appears to be suffering from the effects of ocean acidification caused by climate change. The scientists used satellite measurements and statistical methods to calculate the calcification rate — the amount of calcium carbonate these organisms produced per day in surface ocean waters.

The findings highlight the vulnerability of shell-building organisms and marine ecosystems, the scientists said, publishing their findings in

“These results suggest that large-scale shifts in the ocean carbon cycle are already occurring and highlight organism and marine ecosystem vulnerability in a changing climate,” wrote the CU-Boulder researchers in Geophysical Research Letters.

The research looked specifically at a type of “calcifying” plankton called a coccolithophore, which makes energy from sunlight and builds microscopic calcium carbonate shells, or plates, to produce a chalky suit of armor.

The species is important in the marine carbon cycle and is responsible for nearly half of all calcium carbonate production in the ocean, said lead study author Natalie Freeman, a doctoral student in the CU-Boulder’s Department of Atmospheric and Oceanic Sciences.

Across the entire Southern Ocean, which surrounds Antarctica, there was about a 4 percent reduction in calcification rate during the summer months from 1998 to 2014. In addition, the researchers found a 9 percent reduction in calcification during that period in large regions of the Pacific and Indian sectors of the Southern Ocean.

“This is the first study to use satellites to measure the change in the amount of calcium carbonate and the calcification rates of the Southern Ocean,” said Freeman. “Both have decreased in large portions of the Southern Ocean basin, which is what one might expect considering the ongoing acidification of the world’s oceans.”

The new study also includes data collected from ships to show that the observed decline in calcification occurs simultaneously with a loss in the amount of carbonate ions. Carbonate ions, a key ingredient in coccolithophore shells, are being significantly depleted via ocean acidification when the world’s oceans absorb atmospheric CO2.

The Global Carbon Project, an international environmental organization, estimates roughly 3 billion tons of carbon dioxide from factories, cars, power plants and other human sources were absorbed in 2013 by the world’s oceans. NOAA scientists have estimated that global oceans have become up to 30 percent more acidic since the Industrial Revolution.

The Southern Ocean and the North Atlantic absorb more human sourced CO2 from the atmosphere than other oceans, and the Southern Ocean is particularly vulnerable to ocean acidification because of its naturally low numbers of carbonate ions.

In a changing climate, the response of these organisms and the ecosystems they support is still unknown. But all signs suggest that acidification will likely place these organisms under increased pressure, threatening them in different ways, including the ability of some cocolithophores to build and maintain a shell, according to the CU-Boulder researchers.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s