New ice core data from Greenland offers chilling clues about the direction of Earth’s climate

‘Our kids and grandkids are definitely going to look back and shake their heads at the inaction of this country’s generation’

For several days in July 2012, the surface of the Greenland ice sheet melted over a larger area than at any time in more than 30 years of satellite observations. An estimated 97 percent of the ice sheet surface had thawed by July 12, with satellite data providing a picture of an extreme melt event about which scientists are very confident. Graphic courtest Nicolo E. DiGirolamo, SSAI/NASA GSFC, and Jesse Allen, NASA Earth Observatory.

By Summit Voice

FRISCO — Last summer’s unusual melting at the surface of Greenland’s ice cap has a historic precedent, but you have to go back more than 100,000 years, to an extremely warm interglacial period of Earth’s history, to find it, according to an international science team’s  analysis of ice core samples spanning millennia of climate history.

The new study, published this week in Nature, offers clues about where the planet is headed in terms of increasing greenhouse gases and rising temperatures, according to CU-Boulder ice core expert Jim White — another researcher whose detailed knowledge of climate science has led him to advocate for reductions in greenhouse gas emissions.

“Unfortunately, we have reached a point where there is so much carbon dioxide in the atmosphere it’s going to be difficult for us to further limit our impact on the planet,” White said. “Our kids and grandkids are definitely going to look back and shake their heads at the inaction of this country’s generation. We are burning the lion’s share of oil and natural gas to benefit our lifestyle, and punting the responsibility for it.”

Increasing amounts of carbon dioxide in the atmosphere from sources like vehicle exhaust and industrial pollution — which have risen from about 280 parts per million at the onset of the Industrial Revolution to 391 parts per million today — are helping to raise temperatures on Earth, with no end in sight, said White.

The results of the study show that, during the Eemian interglacial period, the climate in north Greenland rose to about 14 degrees Fahrenheit warmer than today, and the seas were about 15 to 25 higher. Despite the strong warming signal during the Eemian the surface of the north Greenland ice sheet near the ice core study site was only a few hundred yards lower than it is today.

That shows the melting Greenland ice cap contributed less than half of the total sea rise at the time, and that ice melt in other regions were an equally big factor.

“When we calculated how much ice melt from Greenland was contributing to global sea rise in the Eemian, we knew a large part of the sea rise back then must have come from Antarctica,” said White, director of CU-Boulder’s Institute of Arctic and Alpine Research. “A lot of us had been leaning in that direction for some time, but we now have evidence that confirms that the West Antarctic ice sheet was a dynamic and crucial player in global sea rise during the last interglacial period.”

The NEEM project involves 300 scientists and students from 14 countries and is led by Professor Dorthe Dahl-Jensen, director of the University of Copenhagen’s Centre of Ice and Climate. White is the lead U.S. investigator on the project. The National Science Foundation’s Division of Polar Programs funded the U.S. portion of the effort.

The new findings showed that about 128,000 years ago, the surface elevation of ice near the NEEM site was more than 650 feet higher than present but the ice was starting to thin by about 2 inches per year. Between about 122,000 and 115,000 years ago, Greenland’s surface elevation remained stable at roughly 425 feet below the present level. Calculations indicate Greenland’s ice sheet volume was reduced by no more than 25 percent between 128,000 years ago and 122,000 years ago, White said.

Dahl-Jensen said the loss of ice mass on the Greenland ice sheet in the early part of the Eemian was likely similar to changes seen there by climate scientists in the past 10 years. Other studies have shown the temperatures above Greenland have been rising five times faster than the average global temperatures in recent years, and that Greenland has been losing more than 200 million tons of ice annually since 2003. The Greenland ice loss study was led by former CU-Boulder scientist Isabella Velicogna, who is currently a faculty member at the University of California, Irvine.

The intense melt in the vicinity of NEEM during the warm Eemian period was seen in the ice cores as layers of re-frozen meltwater. Such melt events during the last glacial period were rare by comparison, showing that the surface temperatures at the NEEM site were in a cold, nearly constant state back then. But on July 12, 2012, satellite images from NASA indicated 97 percent of Greenland’s ice sheet surface had thawed as a result of warming temperatures.

“We were quite shocked by the warm surface temperatures observed at the NEEM ice camp in July 2012,” said Dahl-Jensen. “It was raining at the top of the Greenland ice sheet, and just as during the Eemian period, meltwater formed subsurface ice layers. While this was an extreme event, the present warming over Greenland makes surface melt more likely, and the predicted warming over Greenland in the next 50-100 years will very likely be so strong that we will potentially have Eemian-like climate conditions.”

The Greenland ice core layers — formed over millennia by compressed snow — are being studied in detail using a suite of measurements, including stable water isotope analysis that reveals information about temperature and greenhouse gas levels and moisture changes back in time. Lasers are used to measure the water stable isotopes and atmospheric gas bubbles trapped in the ice cores to better understand past variations in climate on an annual basis — similar in some ways to a tree-ring record.

In the past, Earth’s journey into and out of glacial periods is thought to be due in large part to variations in its orbit, tilt and rotation that change the amount of solar energy delivered to the planet, he said. But the anthropogenic warming on Earth today could override such episodic changes, perhaps even staving off an ice age, White said.

While three previous ice cores drilled in Greenland in the last 20 years recovered ice from the Eemian, the deepest layers were compressed and folded, making the data difficult to interpret. Although there was some folding of the lowest ice layers in the NEEM core, sophisticated ice-penetrating radar helped scientists sort out and interpret the individual layers to paint an accurate picture of the warming of Earth’s Northern Hemisphere as it emerged from the previous ice age, White said.

In addition to White, other CU-Boulder co-authors on the NEEM paper include INSTAAR scientist Bruce Vaughn and graduate student Tyler Jones of INSTAAR and CU-Boulder’s Environmental Studies Program.

“It’s a challenge being on the ice sheet, because we are out of our comfort zones and are working long, physical hours in an environment that is extremely cold and where the sun never sets,” Jones said. “Being a member of the research team allowed me to understand the ice core recovery process and the science behind it in terms of learning more about past climates and the implications for future climate change.”


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s