About these ads

Study tracks natural variability of ocean acidity

sdf

Ocean acidification will have impacts on most life in the coastal zone. bberwyn photo.

‘For vulnerable coastal marine ecosystems, this may be adding insult to injury …’

By Summit Voice

FRISCO — In addition to the long-term threat of ocean acidification resulting from increased atmospheric greenhouse gases, marine organisms also must deal with short-term spikes of increased acidity.

Those acute episodes are caused by a variety of natural factors, including temperature and algal activity, according to a new study led by researchers with Duke University, who took a close look at natural cycles of acidity in a North Carolina estuary.

“The natural short-term variability in acidity we observed over the course of one year exceeds 100-year global predictions for the ocean as a whole,” said  Zackary I. Johnson, a molecular biologists at Duke’s Nicholas School of the Environment.

Short-term variations in acidity need to be part of the equation as researchers try to project the long-term impacts of ocean acidification.

“For vulnerable coastal marine ecosystems, this may be adding insult to injury,” Johnson said, explaining that the combination of long-term ocean acidification and short-term natural variability can combine to create extreme events that may be especially harmful to coastal marine life.

The study was conducted at the Pivers Island Coastal Observatory at the Duke Marine Lab in Beaufort, N.C., as part of a long-term coastal monitoring program. Researchers collected seawater samples from Beaufort Inlet weekly for a year and on a daily and hourly basis for shorter periods to track changes in the water’s pH and dissolved inorganic carbon on multiple time scales.

“We may see significant changes in biological processes such as primary production,” said Dana Hunt, assistant professor of microbial ecology, who co-authored the new study. “Some organisms, such as phytoplankton, may benefit. Many others, including shelled organisms and corals, will not.”

The Duke team’s analysis showed that a wide range of natural variables, including changes in temperature, algal production and respiration, and water movement caused by tides and storms, triggered sharp spikes in the inlet’s acidity. Some changes occurred over the course of a season; others took place on a daily or hourly basis.

“Understanding to what extent pH naturally varies in coastal ecosystems worldwide will be essential for predicting where and when the effects of increasing ocean acidity will be most profound, and what organisms and ecosystems may be most affected,” Hunt said. “Our research demonstrates we have to take into account a wide range of environmental variables, not just pH.”

Numerous studies have shown that increasing amounts of atmospheric carbon dioxide from human sources are finding their way into the world’s oceans. When the carbon dioxide dissolves in seawater, it reduces the water’s pH and the ability of organisms to form calcium carbonate minerals that are the building blocks of many species’ shells and skeletons. This process is known as ocean acidification.

If current trends continue, experts predict that the mean ocean pH will decrease by about 0.2 units over the next 50 years. A drop of that magnitude could have far-reaching effects on ocean ecosystems and organisms.

The study appears in the peer-reviewed open-access journal PLOS ONE.

About these ads

One Response

  1. […] Bob Berwyn, Summit County Citizens Voice, 3 January 2014. Article. […]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 7,658 other followers

%d bloggers like this: