About these ads

Newly discovered magma layer may help answer some long-standing questions about plate tectonics

dfgh

Research off the coast of Nicaragua led researchers to discover a previously unknown layer of magma that may help explain tectonic movements in the Earth’s crust and mantle.

Findings could lead to better understanding of earthquake dynamics

By Summit Voice

SUMMIT COUNTY — While the observation-based scientific understanding of plate tectonics is well advanced, researchers have long debated the exact mechanics that drive the movement of the Earth’s crust.

New findings based on research conducted off the Nicaragua coastline may help answer some of those questions, as scientists say they’ve discovered a layer of liquified molten rock in Earth’s mantle that may be responsible for the sliding motions of the planet’s massive tectonic plates.

The finding may carry far-reaching implications, from understanding basic geologic functions of the planet to new insights into volcanism and earthquakes.

“This new image greatly enhances our understanding of the role that fluids, both seawater and deep subsurface melts, play in controlling tectonic and volcanic processes,” said Bil Haq, program director in NSF’s Division of Ocean Sciences, which funded the work through the NSF Directorate for Geosciences’ MARGINS (now GeoPRISMS) Program.

The scientists discovered the magma layer at the Middle America trench, using advanced seafloor electromagnetic imaging technology to identify a 15.5-mile thick layer of partially melted mantle rock below the edge of the Cocos plate where it moves beneath Central America.

The new images of magma were captured during a 2010 expedition aboard the research vessel Melville.

After deploying a vast array of seafloor instruments that recorded natural electromagnetic signals to map features of the crust and mantle, the scientists realized they had found magma in a surprising place.

“This was completely unexpected,” said Kerry Key, of the Scripps Institution of Oceanography. “We went out looking to get an idea of how fluids are interacting with plate subduction, but we discovered a melt layer we weren’t expecting to find,” he said.

Studies have shown that dissolved water in mantle minerals results in a more ductile mantle that would facilitate tectonic plate motions, but for many years clear images and data required to confirm or deny this idea were lacking.

“Our data tell us that water can’t accommodate the features we are seeing,” said Naif. “The information from the new images confirms the idea that there needs to be some amount of melt in the upper mantle. That’s what’s creating this ductile behavior for plates to slide.”

The marine electromagnetic technology employed in the study was originated by Charles “Chip” Cox, an emeritus oceanographer at SIO, and in recent years further advanced by Constable and Key.

They have been working with the energy industry to apply this technology to map offshore oil and gas reservoirs.

The researchers say their results will help geologists better understand the structure of the tectonic plate boundary and how that affects earthquakes and volcanism.

“One of the longer-term implications of our results is that we are going to understand more about the plate boundary, which could lead to a better understanding of earthquakes,” said Key.

The researchers are now trying to find the source that supplies the magma in the newly discovered layer.

The research was funded by the National Science Foundation (NSF), and is reported in this week’s issue of the journal Nature by Samer Naif, Kerry Key, and Steven Constable of the Scripps Institution of Oceanography (SIO), and Rob Evans of the Woods Hole Oceanographic Institution.

The Seafloor Electromagnetic Methods Consortium at SIO also supported the research.

About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 7,623 other followers

%d bloggers like this: