About these ads

Study helps pinpoint East Coast sea level rise

Location of tide stations on the Atlantic coast of North America. Sea-level data for U.S. tide stations are collected and distributed by NOAA’s National Ocean Service.

Rate of increase is highest along the northeast coast

By Summit Voice

SUMMIT COUNTY — Calculating sea level rise has been vexing for climate and ocean scientists. Melting ice and thermal expansion both contribute, but the water doesn’t just go up evenly like a bathtub that’s filling up.

Pinpointing the rate and location of sea level rise is critical for planners tasked with adapting their communities to coastal flooding, said John Boon, emeritus professsor at the Virginia Institute of Marine Science.

“Localized projections of sea-level rise are needed to guide the regional planning and adaptation measures that are being pursued with increasing urgency in many coastal localities,” said Boon, who recently completed a new study showing that the rate of sea level rise is increasing at tidal stations along the Atlantic coast of North America, including those in Norfolk, Baltimore, New York, and Boston.

Boon’s findings, published online in the Journal of Coastal Research, confirm those of two other recent studies that find accelerating rates of sea-level rise along the Atlantic Coast of the U.S. and Canada.

“Acceleration in the rate of sea-level rise has the kind of compound effect you see in a savings account, or with credit-card debt,” he said. “It’s not just that sea level is increasing, but that the rate at which it’s increasing is increasing as well. That can cause future sea level to be significantly higher than if the rise rate were constant.”

Boon’s analysi s— which looked at monthly records of mean sea level at 23 tide stations between Key West, Florida and St. John’s, Newfoundland—shows that the rate of sea-level rise relative to land is increasing at all 8 of the tidal stations north of Cape Hatteras with records exceeding 75 years: Halifax, Nova Scotia; Portland, Maine; Boston, Massachusetts; New York’s Battery; Sandy Hook and Atlantic City, New Jersey; Baltimore, Maryland; and Norfolk, Virginia

“The trend in the rate of sea-level rise appears to have changed abruptly in 1987, followed by uniform and rapidly increasing rise rates at the eight stations in the northeast. This feature is unprecedented in water-level records now spanning more than three-quarters of a century at tide stations along the Atlantic coast of the U.S. and Canada,” he said.

Boone said  the rate at which sea level is increasing in these locations is itself increasing by up 0.30 millimeters per year each year, an acceleration that “justifies concern over this region of the U.S. East Coast.”

Boon said his examination of tidal stations with shorter records—using a 43-year base period from 1969 to 2011—“confirms that addition of a quadratic term representing acceleration is statistically significant at 8 additional tide stations from Virginia to Nova Scotia.”

By contrast, four stations along the southeastern U.S. coast— in South Carolina, Georgia, and Florida — show no discernible increase in their rate of sea-level rise.

“Sea level is rising at these stations, but there is no statistically significant acceleration in the rise rate during the period of record,” he said.

He suggested that the observed acceleration in the rate of sea-level rise for the northeastern stations may be due to changes in the strength and position of the Gulf Stream. Some climate models predict that the Gulf Stream and related ocean currents will slow down as greenhouse gases warm the planet and melting ice adds freshwater to the North Atlantic.

Boon’s study comes with both cautions and caveats. He cautions that planners must recognize that future projections of sea-level rise — small or large — don’t include the month-to-month variations in sea level that can cause elevated tides and coastal flooding even under today’s conditions.

“Monthly mean sea level will vary in the future just as it does today. That’s an essential concept regarding coastal inundation in response to sea-level rise. It’s an inherent part of the flood-risk potential. When projecting the average sea level forward to some future year, there will always be uncertainty concerning the magnitude of the sea-level anomaly in any particular month, including one in which a tropical storm or nor’easter occurs. When a future storm does occur, its storm surge will add to the monthly mean sea level present at that time,” he said.

Boon says the magnitude of this short-term variability is “unlikely to decrease regardless of whether the rate of sea-level rise increases, decreases, or stays constant over the next few decades.”

Boon’s caveat relates to using his observed acceleration in the rate of sea-level rise as a basis for projecting future sea level. “My analysis is based solely on examination of past tide-gauge records, so it —u nlike climate models — provides no physical basis for predicting whether the acceleration will remain constant into the future.”

Assuming that the acceleration does remain constant, Boon projects that by 2050, sea level will rise by 0.7 meters (±0.15 meters) in Boston, by 0.57 meters (±0.18 meters) in New York, by 0.49 meters (±0.27 meters) in Washington, D.C., by 0.62 meters (±0.22 meters) in Norfolk, and by 0.15 meters (±0.21 meters) in Charleston, South Carolina.

Boon said the similarity in projected sea-level rise between Boston (0.7 m) and Norfolk (0.62 m) — despite a much higher acceleration rate in the northern city — is explained by high rates of land subsidence in Norfolk and surrounding areas.

“My analysis focuses on relative sea level,” said Boon. “That value — the height of the sea surface in relation to the land, is what really matters to coastal communities.”

Boon will discuss his research during the the annual meeting of the Geological Society of America in Charlotte in early November.

About these ads

2 Responses

  1. Such an important study – research and findings from this and similar studies are critical for land use management planning for the (near!) future.

  2. “…. by 0.15 meters (±0.21 meters) in Charleston, South Carolina.” The margin of error is greater than the predicted rise!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 7,656 other followers

%d bloggers like this: