About these ads

Climate trends to trigger massive change in SW forests

A thermal emission sensor on NASA’s Terra satellite acquired this view of the Waldo Canyon, Colorado burn scar. 2012,  Vegetation-covered land is red in the false-color image, which includes both visible and infrared light. Patches of unburned forest are bright red, in contrast with areas where flecks of light brown indicate some burning. The darkest brown areas are the most severely burned.

Current conditions already reaching historic megadrought levels with widespread tree deaths expected in coming decades

By Summit Voice

FRISCO — Forests of the southwestern U.S. may be on the verge of dramatic changes in the coming decades, as a warming climate may squeeze many species of their narrow ecological niche.

New research shows that Southwest drought conditions in recent years are as intense as they were during the historic megadroughts of the 1200s and 1500s.

Southwestern forests grow best when total winter precipitation is high combined with a summer and fall that aren’t too hot and dry, but many climate models suggest the region will be warmer and drier. New Mexico just experienced its driest 24-month stretch on record.

If those conditions persist, it would likely result in widespread tree deaths and significant changes in the distribution of species on a regional landscape level, according to a new report published in the journal Nature Climate Change last week.

To measure the impacts of climate change, the scientists developed a stress index, factoring winter precipitation, late summer and fall temperatures, and late summer and fall precipitation into one number.

“The new ‘Forest Drought-Stress Index’ that Williams devised from seasonal precipitation and temperature-related variables matches the records of changing forest conditions in the Southwest remarkably well,” said co-author Thomas W. Swetnam, director of the University of Arizona Laboratory of Tree-Ring Research.

“Among all climate variables affecting trees and forests that have ever been studied, this new drought index has the strongest correlation with combined tree growth, tree death from drought and insects, and area burned by forest fires that I have ever seen.”

The index is based on extensive data, including 13,000 tree-core samples matched with known temperature and moisture data. The team also blended in events known  archaeological and other paleorecords, such as the late 1200s megadrought that drove the ancient Pueblo Indians out of longtime settlements such as those at Mesa Verde, Colorado.

After crunching all those numbers, the scientists found that total winter precipitation and the average summer-fall atmospheric evaporative demand (a measure of the overall dryness of the environment) are the two main factors for accurately estimating annual southwestern tree-growth variability with exceptional accuracy.

“Atmospheric evaporative demand is primarily driven by temperature. When air is warmer, it can hold more water vapor, thus increasing the pace at which soil and plants dry out. The air literally sucks the moisture out of the soil and plants,” Williams said.

Finding that summer-fall atmospheric evaporative demand is just as important as winter precipitation and has critical implications for the future of southwestern forests, he said. Ttemperatures in the Southwest have generally been increasing for the past century, with no slowdown expected in that trend.

There still will be wet winters, but increased frequency of warmer summers will put more stress on trees and limit their growth after wet winters, the study reports.

“We can use the past to learn about the future,” Williams said. “For example, satellite fire data from the past 30 years show that there has been a strong and exponential relationship between the regional tree-ring drought-stress record and the area of southwestern forests killed by wildfire each year. This suggests that if drought intensifies, we can expect forests not only to grow more slowly, but also to die more quickly.”

The study points out that very large and severe wildfires, bark-beetle outbreaks and a doubling of the proportion of dead trees in response to early 21st-century warmth and drought conditions are evidence that a transition of southwestern forest landscapes toward more open and drought-tolerant ecosystems may already be underway.

And while 2000s drought conditions have been severe, the regional tree-ring record indicates there have been substantially stronger megadrought events during the past 1,000 years.

The strongest megadrought occurred during the second half of the 1200s and is believed to have played an important role in the abandonment of ancient Puebloan cultural centers throughout the Southwest. The most recent megadrought occurred in the late 1500s and appears to have been strong enough to kill many trees in the Southwest.

“When we look at our tree-ring record, we see this huge dip in the 1580s when all the tree rings are really tiny,” Williams said. “Following the 1500s megadrought, tree rings get wider, and there was a major boom in new trees. Nearly all trees we see in the Southwest today were established after the late-1500s drought, even though the species we evaluated can easily live longer than 400 years. So that event is a benchmark for us today. If forest drought stress exceeds late 1500 levels, we expect that a lot of trees are going to be dying.”

Those conditions could become the norm by the middle of century and under most projections, forest drought-stress levels during even the wettest and coolest years of the late 21st century will be more severe than the driest, warmest years of the previous megadroughts.

The study forecasts that during the second half of this century, about 80 percent of years will exceed megadrought levels.

The current drought, which began in 2000, is a natural case study about what to expect from projected climate scenarios. While average winter precipitation totals in the Southwest have not been exceptionally low, average summer-fall evaporative demand is the highest on record.

“This research is distinctly different from work done in a similar vein in two ways: One, it puts these projections for the future in a concrete historical context, and two, it shows that the impacts on the forests will not be restricted to one species or one site at low elevation, but in fact will take place at forests across the landscape,” said UA co-author Daniel Griffin, a doctoral candidate in the UA School of Geography and Development.

“Consistent with many other recent studies, these findings provide compelling additional evidence of emerging global risks of amplified drought-induced tree mortality and extensive forest die-off as the planet warms,” said co-author Craig D. Allen, a research ecologist with the U.S. Geological Survey.

The article, “Temperature as a potent driver of regional forest drought stress and tree mortality,” is written by A. Park Williams (Los Alamos National Laboratory), Craig D. Allen (U.S. Geological Survey), Alison K. Macalady (University of Arizona), Daniel Griffin (UA), Connie A. Woodhouse (UA), David M. Meko (UA), Thomas W. Swetnam (UA), Sara A. Rauscher (LANL), Richard Seager (Columbia Univ.), Henri D. Grissino-Mayer (Univ. of Tennessee), Jeffrey S. Dean (UA), Edward R. Cook (Columbia Univ.), Chandana Gangodagamage (LANL), Michael Cai (LANL) and Nate G. McDowell (LANL).

Los Alamos National Laboratory, the U.S. Department of Energy, and the National Science Foundation funded the research.

About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 7,747 other followers

%d bloggers like this: